Program: FE (All Branches)

Curriculum Scheme: Revised 2012

Examination: First Year Semester I

Course Code: FEC 102
Time: 1 hour

Course Name: Applied physics I
Max. Marks: 50

Note to the students:- All the Questions are compulsory and carry equal marks .

Q1.	In a certain BCC structure the free volume/unit cell is $61.72 \times 10^{-30} / \mathrm{m}^{3}$. Calculate the lattice parameter.
Option A:	$4.64 \mathrm{~A}^{0}$
Option B:	$4.63 \mathrm{~A}^{0}$
Option C:	$0.464 \mathrm{~A}^{0}$
Option D:	$464 \mathrm{~A}^{\circ}$
Q2.	Mobilities of electrons and holes in a sample of intrinsic Ge at room temperature are $3600 \mathrm{~cm}^{2} \mathrm{~V}$-sec and $1700 \mathrm{~cm}^{2} \mathrm{~V}$-sec respectively. If the electron and hole densities are each equal to $2.5 \times 10^{13} / \mathrm{cm}^{3}$. Calculate the conductivity.
Option A:	$21.2 \mathrm{mho} / \mathrm{m}$
Option B:	$2.12 \mathrm{mho} / \mathrm{m}$
Option C:	$0.212 \mathrm{mho} / \mathrm{m}$
Option D:	$212 \mathrm{mho} / \mathrm{m}$
Q3.	Calculate the reverberation time of al hall of volume $2400 \mathrm{~m}^{3}$ and seating capacity of 150 people when the hall is empty?
Option A:	5 sec
Option B:	3.09 sec
Option C:	0.44 sec
Option D:	2.40 sec
Q4.	The Hall coeffient of a specimen is $3.66 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{C}$,its resistivity is 8.93×10^{-3} $\Omega \mathrm{m}$,find μ ie mobility.
Option A:	$0.035 \mathrm{~m}^{2} / \mathrm{V}$-sec
Option B:	$0.040 \mathrm{~m}^{2} / \mathrm{V}$-sec
Option C:	$0.039 \mathrm{~m}^{2} / \mathrm{V}$-sec
Option D:	$0.041 \mathrm{~m}^{2} / \mathrm{V}$-sec
Q5.	A quartz crystal of thickness 1 mm is vibrating at resonance. Calculate its fundamental frequency if the Young's modulus of quartz $=7.9 \times 10^{10} \mathrm{~N} / \mathrm{m}^{2}$ and density of quartz $=2650 \mathrm{~kg} / \mathrm{m}^{3}$
Option A:	2.73 MHz
Option B:	2.73 KHz

Option C:	0.273 MHz
Option D:	27.3 KHz
Q6.	Two parallel plates of a capacitor having equal and opposite charges are separated by a 2 cm thick dielectric slab with dielectric constant 3 . If the electric field is $10^{6} \mathrm{~V}$, calculate displacement density.
Option A:	$0.256 \times 10^{-3} \mathrm{c} / \mathrm{m}^{2}$
Option B:	$0.2654 \times 10^{-4} \mathrm{c} / \mathrm{m}^{2}$
Option C:	$2.656 \times 10^{-5} \mathrm{c} / \mathrm{m}^{2}$
Option D:	$26.56 \times 10^{-6} \mathrm{c} / \mathrm{m}^{2}$
Q7.	The S.I. unit of mobility
Option A:	m / v
Option B:	$\mathrm{m}^{2} / \mathrm{V}$-sec
Option C:	$\mathrm{m}^{3} / \mathrm{V}$-sec
Option D:	$\mathrm{m} / \mathrm{sec}$
Q8.	Which of the following equation describes Bragg's law of diffraction? (Assume that all symbols have their usual meaning.)
Option A:	$2 \mathrm{~d} \sin \theta=\lambda$
Option B:	$2 \mathrm{~d}=\mathrm{n} \lambda$
Option C:	$2 \mathrm{~d}=\mathrm{n} \lambda \sin \theta$
Option D:	$2 \mathrm{~d} \sin \theta=\mathrm{n} \lambda$
Q9.	Iron has a relative permeability of 5000. Calculate its magnetic susceptibility
Option A:	3500
Option B:	4500
Option C:	4999
Option D:	4800
Q10.	Magnetic materials which are easily magnetized or demagnetized are called
Option A:	Hard magnetic materials
Option B:	Soft magnetic materials
Option C:	Semi soft magnetic materials
Option D:	Semi hard magnetic materials
Q11.	 Find the miller indices for shown crystal structure .
Option A:	(111) , (100)
Option B:	(121), (001)

Option C:	$(101,010)$
Option D:	None of these
Q12.	In reverberation time the intensity level drops by
Option A:	30 dB
Option B:	50 dB
Option C:	40 dB
Option D:	60 dB
Q13.	In a solid there is an energy level lying 0.012 eV below Fermi level. What is the probability of this level not being occupied by an electron at $27^{\circ} \mathrm{K}$?
Option A:	0.614
Option B:	0.516
Option C:	1.5×10^{-6}
Option D:	0.386
Q14.	Frenkel effect is a combination of
Option A:	Anions
Option B:	Anions vacancy and one cation interstitial defect
Option C:	Option A \& option B
Option D:	Cation vacancy and one cation interstitial defect
Q15.	When the direction of an external magnetic field is reversed and the rest energy is lost in the form heat. This loss of energy is
Option A:	remanent induction
Option B:	hysteresis loss
Option C:	hysteresis curve
Option D:	hysteresis loop
Q16.	A solenoid consisting of 500 turns and carrying 4 amp.current is 0.05 m long ,calculate magneto motive force .
Option A:	2500 Amp-turn
Option B:	2000 Amp-turn
Option C:	2100 Amp-turn
Option D:	1500 Amp-turn
Q17.	Calculate the ratio of the number of vacancies to the number of atoms when the average energy required to create a vacancy is 1.95 eV at 500 K
Option A:	4.30×10^{19}
Option B:	3.15×10^{16}
Option C:	4.34×10^{19}
Option D:	4.02×10^{16}
Q18.	A mild steel ring having cross sectional area $5 \mathrm{~cm}^{2}$ withh its diameter 20 cm has a coil of 200 turns wound over it. Determine the reluctance.

Option A:	2.63×10^{6} Amp-turn/Wb
Option B:	1.50×10^{5} Amp-turn/Wb
Option C:	$2.50 \times 10^{6} \mathrm{Amp}$-turn/Wb
Option D:	3×10^{6} Amp-turn/Wb
Q19.	To represent crystal direction, the Miller indices should be enclosed in
Option A:	square brackets
Option B:	round brackets
Option C:	curly brackets
Option D:	none
Q20.	Fermi energy level
Option A:	is the top most filled energy level at OK temperature
Option B:	is the top most filled energy level at $0^{\circ} \mathrm{C}$ temperature
Option C:	separates valance band and conduction band
Option D:	Option A and Option c
Q21.	Which of the following effects can be used to produce ultrasonic waves?
Option A:	Magnetostriction effect
Option B:	Doppler Effect
Option C:	Magnetic effect
Option D:	Sound effect
Q22.	Find the echo time of ultrasonic pulse travelling with velocity $5.9 \times 10^{3} \mathrm{~m} / \mathrm{sec}$ in a mild steel whose correct thickness displayed by gauge meter is 1.8 mm
Option A:	4μ-sec
Option B:	5μ-sec
Option C:	6.1μ-sec
Option D:	8μ-sec
Q23.	With the help of which of the following equations is the distance calculated from a known wavelength of the source and measured angle?
Option A:	Coolidge equation
Option B:	Bragg's equation
Option C:	Debye equation
Option D:	Scherrer equation
Q24.	Diamond structure has its cube edge 3.75 A and atomic weight 12.01 ,calculate its density
Option A:	$3.03 \mathrm{gms} / \mathrm{cm}^{3}$
Option B:	$2.63 \mathrm{gms} / \mathrm{cm}^{3}$
Option C:	$2.50 \mathrm{gms} / \mathrm{cm}^{3}$
Option D:	$1.30 \mathrm{gms} / \mathrm{cm}^{3}$
Q25.	What is the probability of an electron being thermally excited to the conduction band is Si at $27^{\circ} \mathrm{C}$. The band gap energy is 1.12 eV .

Option A:	3.5×10^{-5}
Option B:	6.3×10^{-6}
Option C:	$\mathbf{1 . 5 \times 1 0 ^ { - 6 }}$
Option D:	5.6×10^{-6}

